News from UPC Separating Coulomb and Hadronic Interactions

Falk Meissner

for the UPC-Group: Janet Seger, Akio Ogawa, Pablo Yepes, Vladimir Morozov, Spencer Klein, Jim Thomas, Sergey Timoshenko

Au*+n

What's New:

•Systematic Studies

Progress

Goals

- Publish first observation of rho production in UPC
- Relative cross section measurement w.r.t. hadronic
 AuAu x-section from minimum bias data

Many details of the event extraction were studied

- Overlap region Coulomb/hadronic
- Extrapolation into unmeasured region –rapidity
- Systematic studies for acceptance correction
- Event selection cuts are settled
- Stability studies for luminosity normalization
- Background subtraction hadronic/e+e-

Separation Coloumb/Hadronic

UPC b>2R

Have to clearly define which cross section we are measuring, but:

- Coherent rho-events (pT<0.15) with additional primary tracks from overlap with peripheral hadronic AuAu collisions
- Hard to model in MC
- Need to quantify/separate the effect
- Separation by ZDC signals => Impact parameter tagging.
- UPC: GDR->single neutron emission
- Events with hadronic AuAu: multiple neutron ZDC signal!

UPC+peripheral b~2R

ZDC Response

Define 3 regions with ZDC East/West

- 1n,1n (single neutron)
- 1n,xn (single, multiple)
- xn,xn (hadronic)
- Summary (plots follow):
 - for 1n1n only events with exactly two primary tracks contain rhos (pT<0.15)
 - =>Pure UPC
 - For 1nxn, xnxn events with 3<=nPrimary<10 contain also rhos = overlap region

ZDC east

Single Neutron ZDC<20

Nprim==2

Nprim>2

Rhos only

No additional rhos

Clean UPC sample -> Definable Cross Section

Overlap 1n,xn; xnxn

Combinatorial backgrounds are large for Nprim>2
30% of rho events have additional primary tracks
Can quote separate cross sections 1nxn and xnxn
Contributions from Nprim>2 systematic uncertainty

1nxn

xnxn

STAR, I

nprim=2,xnxr

Rho Acceptance

- Acceptance is flat in pT and Mass
- Rapidity Acceptance only |y| < 1
- Acceptance& Efficiency |y| < 1 = 0.55all rapidity = 0.28
- Need to extrapolate into unmeasured region!

| Acc=Gene -in - Acc/Gene pt_chrg/Onl

pT

9.35 0.3 0.3

0.25

0.2

0.15

40.1

Extrapolation

- StarLight MC simulation contains now nuclear breakup (Theory to Compare: Klein,Nystrand,Balz)
- Nuclear breakup (=ZDC signal) tags small impact parameters
- Rapidity Distribution differs between rho prod. with and without breakup
- All/|y| < 1 = 1.9 for breakup
- All/|y| < 1 = 2.6 without

STAR, Dec 2001

Falk Mei

Acceptance Correction Iterative

- Acceptance correction with MC needs correct shape of input distributions (Mass, Rapidity, Pt)
- If input distributions are not correctly known need iterative procedure to correct for acceptance
- Critical for limited acceptance in Rapidity
- Effects are small

Systematics e.g. Rapidity

First Results for UPC from 2001 Data

- Two basic trigger Sets
- 'UPC-Minbias' = Minimum Bias
 Low multiplicity minimum bias* Vertex cut* CTB<75
 No SVT to keep event size and readout time down
- Topology Trigger
 In parallel to central trigger use up available bandwidth
 No interference with central trigger

Topology Trigger Data Set

- 'Topo' 0x3001 1.55M events
 - Topology bit, low multiplicity-N-S coincidence
 - 16 'pixels' of phi*eta = 1.5 * 0.5
 - CTB killer bit (1 us deat time after a slat is hit)
 - L0 rate \sim 2*central rate (20-40Hz)
 - L3 trigger ~85-90% rejection of L0 events
 - 5% of L0 untriggered through L3 = about half of ev
- 'Topo & ZDC' 0x3002 21k events
 - Same as above & ZDC coincidence (1Hz)
 - Very clean events 50% of L0 pass L3 trigger!
- 'Topo Efficiency' 0x3011 1.0M events
 - Minimum bias, CTB<15 mips, no Vertex cut, no Topology bit, prescaled
 - Also used for monitoring the interaction diamond

Online Look at Topology Data

L3 online histograms

(Pablo Yepes)

Transverse Momentum

Inv. Mass

25-50k rho, 50-100x w.r.t. last year!

STAR, Dec 2001

Falk Meissner, LBNL

Summary

- Separation of Coulomb/Hadronic in hand (i.e how to deal with additional primary tracks)
- Todo: put pieces together, finalize numbers
- Analysis of 2000 data close to be finished (paper by x-mas?!)
- 2001 successful data taking
- =>two track events-we got about what we wanted
- ~1.5M Topology triggered events on tape (750k passed L3) (about 50-100x last year)
- 2M low multiplicity minimum bias events (10x last year)
- Thanks to Trigger/DAQ/L3
 esp. Eleanor, Jack, Jeff, Hank, Jens, Bill